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We study the mean-first-passage-time problem for systems driven by the coin-toss square-wave
signal. Exact analytic solutions are obtained for the driftless case. We also obtain approximate so-
lutions for the potential case. The mean-first-passage time exhibits discontinuities and a remarkable
nonsmooth oscillatory behavior which, to our knowledge, has not been observed for other kinds of

driving noise.
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I. INTRODUCTION

There is a vast literature dealing with dynamical sys-
tems driven by Gaussian white noise, indeed a venerable
literature that extends back more than a century. In re-
cent years interest has broadened to processes that are
driven by noise that is not white and/or not Gaussian, a
problem that has also generated a considerable literature
[1]. Nonwhite noise (colored noise) represents random
processes whose time scales are not appreciably shorter
than those characteristic of the dynamical system of in-
terest. Because Gaussian colored noise is very difficult
to deal with analytically, a great deal of work has also
been done with driving noise that is statistically much
simpler than Gaussian noise, namely, dichotomous noise.
Not only is it often simpler to deal with noise that can
take on only two values (rather than an infinity or a con-
tinuum of values), but in many situations in which the
important characteristic of the noise is whether it is “on”
or “off,” or whether it is “up” or “down,” such two-valued
noise is actually a more accurate representation [1-7].

A model used in many of these studies [2—4] is a single-
degree-of-freedom system described by a dynamical vari-
able X (t) and driven by a noise F'(t):

X(t) = f(X) + F(t). (1.1)

The problem is completely specified once the function
f(X) and the statistics of the noise F(t) are given. Fur-
ther, one has to decide what particular property or char-
acteristic of the “solution” X (t), itself a random variable,
is to be calculated. Common among these are the proba-
bility density p(x,t) for the probability that the random
variable X (t) = z, the stationary form p(z) of this den-
sity as ¢ — 0o, and the mean-first-passage time (MFPT)
for X(t) to first achieve given threshold values. More
recently, work has been done on systems such as (1.1)
but with the inclusion of a double-time-derivative term
in X (t), that is, mechanical systems that include inertial
effects [5,6]. Equation (1.1) can be thought of as a highly
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overdamped limit of such a mechanical system.

In this paper we consider the MFPT problem for
stochastic systems governed by an evolution equation of
the form (1.1) where f(X) is a smooth function and F(t)
is a particular kind of dichotomous noise that has sel-
dom been considered in the literature. The virtue of our
noise, as we show below, is that in the appropriate pa-
rameter limits it encompasses a perfectly periodic signal,
the noise appropriate to an ordinary random walk (that
is, as generated by flipping a fair coin), and a standard
dichotomous Markov process.

The noise that we consider can be called “persistent-
periodic” dichotomous noise: F'(¢) can take on either of
the two values F'(t) = +a during fized time intervals of
duration 7. At the end of each time interval of duration
7 there is a probability of persistence p that the noise
retains the same value and a probability ¢ = 1 — p that
the noise switches to the other value. In other words, the
noise is symmetric and its transition-probability matrix

is given by
q9 p

Over 30 years ago the stochastic system defined by
Egs. (1.1) and (1.2) was first studied by McFadden [8]
and Cohen [9] in the context of RC low-pass filters, i.e.,
with a linear drift. In that work the driving noise F'(t)
was called “the coin-toss square wave.” The main result
of those analyses was the calculation of the stationary
probability distribution function (PDF) of the process
(1.1). McFadden only treated the case of the symmet-
ric coin-toss square wave (p = ¢ = %) and evaluated the
stationary PDF for one specific value of the parameters.
Cohen extended the results to the general case p # ¢ and
for a wider parameter regime.

More recently Irwin, Fraser, and Kapral [4] and
Fraser and Kapral [5] also treated a dichotomous driving
noise and a linear drift, but with a different transition-
probability matrix

(1.2)

951 ©1993 The American Physical Society



952 JOSEP M. PORRA, JAUME MASOLIVER, AND KATJA LINDENBERG 48

6
p q)’
That is, at each time interval one value is selected with
probability p and the other with probability ¢ = 1 — p,
regardless of the previous value of the noise. This kind of
noise might be called “periodic” dichotomous noise since
there is no memory or persistence of the previous value.
Like McFadden and Cohen, Fraser and co-workers stud-
ied certain features of the stationary probability-density
function for the process (1.3).

The results found by Cohen [9] and by Fraser and co-
workers [4,5] for these systems are dramatic. For ex-
ample, we cite one result (found independently by both
groups): for a linear drift and certain parameter values
the set of points visited by the system after an infinite
number of switches of the noise is a Cantor set. Fraser
and co-workers observed a broader array of unexpected
behaviors, including resonancelike phenomena that they
termed “stochastically induced coherence.”

It is useful at this point to briefly anticipate our own
most interesting result: we find that the MFPT for our
system can exhibit very unusual behavior even in the ap-
parently simplest situations (e.g., in the absence of drift),
behavior that is entirely different from that of the system
(1.1) driven by dichotomous Markov noise [2] or by any
continuous form of the noise (such as Gaussian noise). In
particular, we calculate the MFPT to reach either of two
boundaries if the process starts at X (0) = zo. As a func-
tion of z¢ we find that the MFPT is an oscillatory func-
tion, that is, as the starting point of the process moves
away from one boundary and closer to the other, the
MFPT increases, then decreases, then increases, etc. In-
deed, this oscillatory behavior is in general quite abrupt
in the sense that a small change in the initial state can
cause a considerable increase or decrease in the MFPT
to reach a boundary.

The noise F'(t) defined by (1.2) reduces in various lim-
its to several important and familiar cases. Thus, when
p = 0, F(t) becomes a periodic deterministic signal of
period 7 [note that the noise defined by (1.3) does not
become strictly periodic in any limit]. Whenp = ¢ = 1/2
(and only then), the noises defined by (1.2) and (1.3)
agree. In this case when f(X) = 0, the output X (¢) of
Eq. (1.1) is the ordinary random walk. For p # ¢ the
output X (¢) of (1.1) with (1.2) is the persistent random
walk. Moreover, as we explain in Sec. III, if

(1.3)

p=1-—AT, q=At (A >0), (1.4)
then in the limit 7 — 0 the noise F'(t) defined by (1.2)
becomes Markovian dichotomous noise.

The paper is organized as follows. In Sec. II we detail
the dynamics of the system and derive the general equa-
tions satisfied by the MFPT. These equations turn out to
be exact difference equations (as opposed to the usual dif-
ferential equations associated with Gaussian white noise
or with dichotomous Markov noise). In Sec. III we ob-
tain closed analytical solutions of these equations when
f(X) = 0 and study some relevant special cases. In

Sec. IV we treat the small-7 case when f(X) # 0. In this

case we recover the known results for dichotomous noise
and Gaussian white noise. The conclusions are drawn in
Sec. V.

II. ANALYSIS

We assume that f(X) is a smooth function such that
the solution X (¢) of Eq. (1.1) does not become infinite for
a finite time. Let Xt (t) and X~ (¢) be the solutions of
Eq. (1.1) when F(t) = a and F(t) = —a, respectively. We
see from Eq. (1.1) that X *(¢) is defined by the expression

XE(t) dz
t= /z OETE

where o = X (¢t = 0). Since f(z) + a > f(z) — a for all
x, we have by the comparison theorem [10] that

(2.1)

XT(@) > X (¢). (2.2)

Let z, be an asymptotically fixed stable point of
Eq. (1.1), i.e., when z, = z then f(z}) + a =0 and
; +(4) — pt
tligloX () = =7, (2.3)
with similar relations for F'(t) = —a and z, = ;. Then
by the comparison theorem we have
zF >z, (2.4)

We note that this inequality necessarily implies that

f(@)+a>0 and flz)—a<0 (2.5)
for all z such that z; < z < z}. We thus see that when
the process (1.1) has at least two fixed points (one for the
value +a and the other for —a) there exist two “natural
boundaries,” z; and z}, that the system cannot cross.
Therefore if we are interested in finding the MFPT for
the process to reach certain values, say z; or z;, these
values must lie inside the natural barriers, that is,

z; <z <29 <zl (2.6)
If there are no fixed points we assume that X+ (t) [X ~(t)]
is an increasing (decreasing) function of time. In this case
no restriction applies to the critical values z; and z;. The
various quantities defined in this paragraph are sketched
in Fig. 1.

In order to establish the equations satisfied by the
MFPT to z3 or z; we first need to define some dynamical
quantities. Let Az*(zo) be the distances traveled by the
system when driven by F(t) = +a during a period 7, i.e.,

zo+AzE (zo) d
r= / _de (2.7)
2o f(z)*£a
Furthermore, let z+ (z7) represent the farthest that the
process can be from the boundary z; (z1) if it is to reach
this boundary within one period 7:
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X(4)

FIG. 1. Dynamical variable as a function of time for two
values of F(t). X*(t) is the trajectory when F(t) = a, and
X7 (t) is the trajectory when F(t) = —a. The trajectories
approach their respective asymptotic fixed points z} and z; .
The critical values are z; and z».

#2 dz

1 dx
R T_Li e @

We now define T%(zo) and T (zo) to be the MFPT’s
to either of the critical boundaries zo and z; under the
assumption that F'(0) = +a and F(0) = —a, respectively.
If we assume that Prob{F(0) = +a} = } then the MFPT
to either boundary averaged over the initial value of the
driving noise is given by

T (o) = T-20) ;T_(m").

T =

(2.9)

We begin with the choice F(0) = +a. If zo > =t then
the system (1.1) crosses the upper level z; during the first
time interval with certainty (i.e., in a time smaller than
7). Therefore

T+ (z0) = / % (@0 >2").  (2.10)

On the other hand, if £ < z* the system reaches 23
during a later period. In this case we may write

T (zo) = 7 + pT (z0 + Az (20))

+qT ™ (zo + AzT (z0)), (2.11)

where £o < zt. This equation is derived from the con-
sideration that if ¢ < 1 then the MFPT is necessar-
ily greater than 7. Moreover, the second term on the
right-hand side of Eq. (2.11) is the MFPT [starting from
zo + Azt (zo) and with F(t) = +a] times the proba-
bility p of keeping the value F'(t) = +a for the driving
noise. The third term on the right-hand side of Eq. (2.11)
is the MFPT [starting from the same point, but with

F(t) = —a] times the probability ¢ of changing the value
of the driving noise to —a.
Following analogous reasoning we find that

T (zo) = /zl % (To < z7) (2.12)
and
T (o) =7+ pT ™ (zo + Az (z0))
+qT " (z0 + Az~ (z0)) (2.13)

when zg > z~.

In the special case p = q = % we can easily obtain a
closed difference equation for the MFPT (2.9) to either
boundary. In this case it is straightforward to find that

Egs. (2.11) and (2.13) are equivalent to

2T (z0) — T(zo + Az™ (x0)) — T'(xo + Az~ (z0)) = 27,
(2.14)

when 2~ < 2o < 7. Now the “end-interval conditions”
(2.10) and (2.12) (which we will loosely call “boundary
conditions”) are

1 - ——dl L T x (x
T =4 [ jay et + TG+ e @]
(2.15)

when zt < z¢ < 25, and

L [T 0 (e + Act (e
T =4 [ jayma t A+ TG+ aat @),
(2.16)

when z; < zg < 7. Equation (2.15) is derived from the
consideration that if z+ < z¢ < 2, then T (z0) is given
by Eq. (2.13) while T+ (z) is given by Eq. (2.10). Com-
bining these two equations to obtain the MFPT (2.9)
then immediately leads to Eq. (2.15). Analogous reason-
ing leads to Eq. (2.16).

The most general statement of the MFPT problem
considered here is contained in the difference equations
(2.11) and (2.13) with the “boundary conditions” (2.10)
and (2.12), respectively. This is a system of difference
equations with variable delay, that is, the distances Az*
between the points connected by the equations change
as xo changes, a consequence of the presence of f(z).
This system of difference equations replaces the more
traditional second-order differential equation that would
be appropriate for the MFPT if the driving noise were
Gaussian and white. Difference equations with variable
delay are of course extremely difficult to solve analyti-
cally, so a solution in all generality is impossible. Indeed,
an explicit solution for any nonzero form of f(z) appears
impossible—only a numerical solution appears feasible.

As we will see in Sec. III, for the driftless case [f(z) =
0] the set of difference equations (2.10)—(2.13) with vari-
able delay reduces to a system of difference equations
with constant delay, that is, to a set of ordinary differ-
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ence equations. In this case it is not difficult to find
an exact solution because the set §2(zo) of points vis-
ited by the system after an infinite number of itera-
tions of period 7 (starting from a given “initial posi-
tion” xg) is a finite set. In the presence of any drift
f(z) # 0, however, the situation becomes much more
complex, since now the delay A*(z,) depends on the
position and €2(zo) is in general an infinite set. As men-
tioned earlier and as an illustration of the complexity
of the general case we mention that, for a linear drift,
Cohen [9] found that for certain parameter values the set
of points Qo = {Q(xo)|zo € [e, 8]} visited by the system
after an infinite number of iterations of period 7, start-
ing from a given interval (a, (), is a Cantor set that is
known to have a fractal dimension 0 < d < 1. The same
result has been obtained independently by Fraser and
co-workers [4,5].

III. LINEAR DRIFTLESS DYNAMICS

For the driftless case, f(z) = 0, the dynamics of the
system is linear since in this case X*(¢) = zo + at and
Azt (xg) = +ar. We can assume without loss of gen-
erality that 2y = 0, 2z = L, and a = 7 = 1. This last
assumption is equivalent to the choice of the dimension-
less quantities

r_Z r_ b
= —), t = —. 3.1
o= 2 ! (31)
Below we drop the primes.
Equation (2.11) now reads
T (z0) =1+ pT T (z0 + 1) +qT (z0 + 1), (3.2)

where 0 < z9 < L — 1. In this case the boundary condi-
tion (2.10) is

TH(zo) =L —xzo (L-1<=o <L) (3.3)
Also from Egs. (2.12) and (2.13) we have
T (z0) =14+ pT (xo — 1) + ¢TF (z0 — 1) (3.4)
when 1 < zg < L, with
T (o) = xo (0<zo<1). (3.5)

Equations (3.2) and (3.4) constitute a set of linear cou-
pled difference equations. From this set together with
the boundary conditions (3.3) and (3.5) we will now find
closed equations for both T%(zo) and T~ (zo) for all zo.
Toward this purpose, Eq. (3.2) can be rearranged and its
arguments shifted to read

T (20) = [T* (w0 — 1) = pT*(z0) ~ 1]

(1<zo <L) (3.6)

and also

T (20— 1) = %[T*(mo —2) — pTH (20— 1) — 7]

(2<z9 <L) (3.7)
Substituting Eqgs. (3.6) and (3.7) into Eq. (3.4) we obtain
the following closed difference equation for T'% (z):

2T+ (o — 1) — T (x0) — T (20 — 2) = 2%, (3.8)

where 2 < z¢ < L. The full solution of this system
requires two boundary conditions. One boundary con-
dition is given by Eq. (3.3). In order to find the second
boundary condition we substitute Eq. (3.6) into Eq. (3.4)
and obtain

1
E[T*(azo —1) —pTH(z0) — 1] = 1+ qT " (zp — 1)

+pT_(:E0 - 1)’
valid for 1 < zo < L. If we restrict zo to the interval
1<zp<2then0<xzo—1<1and from Eq. (3.5) we
have

T (zo —1) = xo — 1.
The second boundary condition then reads
(1= ¢*)T* (w0 — 1) — pT* (z0) = (1 + q) + gp(z0 — 1),
where 1 < z¢ < 2, or equivalently,
(1= ¢*)T™ (20) = PT™ (2o + 1) = (1 + q) + gpo,

where 0 < z¢ < 1.

The solution of the second-order difference equation
(3.8) with the boundary conditions (3.3) and (3.9) is de-
tailed in Appendix A. To exhibit the solution it is con-
venient to introduce the probability ratio

e=1.

p

A perfectly periodic signal then corresponds to the value

£ = 00, an ordinary random walk to £ = 1, and a totally

persistent walk with a fixed velocity to £ = 0. In terms

of this ratio, the results for the MFPT to 0 or L for the
driftless process then are

T*(zo) = L — (w0 + j) + Aj — £5°,

(3.9)

(3.10)

(3.11)

where

3

1+N€+i—+T§

[2(xo+j)—L— N +1]

f L—(+1)<zo<N—j

A= ¢ (3.12)
1+(N+1)€+'1—T(Jv+—1)€[2($0+j)—L_N]

if N—j<mzo<L-—j.

Here j = [L — zo) is the integer part of L —z( and is thus
the number of points in the interval (zo, L] where the
random walker may change its velocity. Depending on
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the initial position x¢, 7 can take on the integer values j =
0,1,2,...,N where N is the integer part of L. Similarly
we find

T~ (zo) = zo — k + Bk — €k2, (3.13)
where
£
1+(N+1 ——=——— [L—2(zo—k)— N
+ (N D€+ {5 [ — oo = 1) = )
if k<zog<L—-(N-k)
B = ¢ (3.14)
1+N€+ m[L—2(ZI!0—k)—(N—1)]
if L-(N—-k)<zo<k+1.
Here k = [z(] is the integer part of z¢ representing the

number of points where the random walker may change
its velocity in the interval [0,zo). We note that 7+ k+ 1
is the total number of points in the interval [0, L] where
the system may change its velocity.

Note that the MFPT’s are quadratic in the integer part
of the distance to one or the other boundary. Quadratic
dependence on the distance is a signature of a driftless
process (such as the mean-square displacement being pro-
portional to the time in an ordinary diffusive process),
but the dependence on only the integer part here leads
to very interesting and different behavior.

Let us analyze these results with the aid of Figs. 2—-4.
The most dramatic observation is the oscillatory behavior
of the MFPT as a function of the initial position z of the
walker. This unusual behavior will be addressed in detail
below, where a physical explanation of this observation is
given. First we note some of the more obvious features of
our results. We see in Fig. 2 that for a fixed L the MFPT
for a given initial position is in general larger for smaller
p (larger £). This is reasonable, since a perfectly periodic

25

FIG. 2. Mean-first-passage time 7" (zo) in dimensionless
units as a function of zo for L = 5.5. The number of points
at which the walker can change its velocity between the ab-
sorbing boundaries is N = 5. Results are shown for three
different values of the persistence ratio: £ = 7/3 (top curve),
1 (middle curve), and 3/7 (bottom curve). The circles repre-
sent the results of direct numerical simulations of the process.

FIG. 3. Mean-first-passage time 7'V (zo) in dimensionless
units as a function of zo for £ = 7/3 and L = 27.5. The
number of points at which the walker can change its velocity
between the absorbing boundaries is N = 27. The circles
represent the results of direct numerical simulations.

signal (£ = oo) causes the walker to simply move back
and forth, repeatedly covering the same ground within
the interval unless the walker steps on a boundary dur-
ing the first period. Thus, unless the walker reaches the
boundary during the first period it will never reach it at
all and thus the MFPT T+ or T~ is then infinite. The
other extreme, £ = 0, leads to a walk directly toward a
boundary with the initial velocity. Note also the effect
of increasing the number of points at which the walker
can change its velocity, as shown in Figs. 3 and 4. The
MFPT is now greater since the walker can change direc-
tion more frequently and can therefore delay its arrival
at the boundaries.

Let us return to the oscillatory behavior of the MFPT.
This behavior arises from the discontinuities that can be

15

%o

FIG. 4. Mean first-passage time 7T'(zo) in dimensionless
units as a function of zo for large £ and L = 52.5 (N = 52).
Here p = 0.05 (£ = 19). The jagged curve is the exact result
obtained from Egs. (3.11)—(3.14) in Eq. (2.9) and the smooth
curve is the approximation given by Eq. (4.29).
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seen in Eq. (3.11) with (3.12) and Eq. (3.13) with (3.14)
precisely because of the dependence on only the integer
portion of the distance to one or the other boundary:
both Tt (z¢) and T~ (zo) are discontinuous from the right
at to =L—-N,L— (N —-1),..., L —1 (where T+ and
T~ jump down) and discontinuous from the left at zo =
1,..., (N —=1), N (where T+ and T~ jump up). These
discontinuities are evaluated explicitly in Appendix B.
Since the results obtained here and in Appendix B are
analytically somewhat cumbersome, it is useful to present
the simplified expression for the MFPT when the persis-
tence probability p is small (§ is large). For the initial-
condition-averaged MFPT (2.9) we obtain in this limit

N -1

(1+&) +Ek(N—-1—k)
if L-(N—-k+1)<zo<k

T+ +ER(N — k)

if k<xzo<L—(N-k).

This equation is illustrated in Fig. 5. Note that al-
though the absolute magnitude of the discontinuities in
the MFPT increases with increasing £, the magnitude
relative to the MFPT decreases.

Let us now return to the physical explanation of the
oscillations apparent in Figs. 2—-4. Let us first examine
the behavior of T (z¢) near a left discontinuity point, for
example, £o = 2. When zy approaches 2 from the left we
have that £ = 1. However, when zo approaches 2 from
the right we have k = 2. As a result of this, the random
walker can change its velocity at one additional point,
which implies that the escape time can increase by at
least 2, which is the time to go away from and return to
the same point. The net result of this effect is a positive
discontinuity of 7% (z¢) at o = n withn =1,2,3,...,N.
On the other hand, if, for example, x¢ approaches L — 2
from the left we have that j = 2, while approaching L —2
from the right we have j = 1. In this case the time to
escape decreases by at least 2. This results in a negative

15
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Xo

FIG. 5. Same as in Fig. 4 but now the circles are obtained
from the approximation (3.15). In both cases the agreement
is excellent.

discontinuity at zo = L — n withn =1,2,3,..., N. The
above arguments also apply to T (zo).

We should note that the above discussion is only valid
if L is not an integer. If L is an integer, i.e., if L =
N, then a most interesting feature in the behavior of
the MFPT is observed, namely, a collapse of pairs of
discontinuities to single points. The MFPT is still given
by Eqgs. (3.11) and (3.13) but now the coefficients A and
B are given by

¢ 'E .
1+N§+1+N£[(2_]+1)+2$0—2N]
A= if N—([j+1)<ze<N-—3j
L1+ (V+1)¢ if 2o=N—3j.
(3.16)
1+(N+1)¢ if zo=k
B = { 3 _
1+N£+1+N£[(2k+1) 2]
L if k<zog<k+1.

In this case the MFPT is discontinuous from the right and
also from the left at the same points zo = 1,2,3,...,N
as shown in Fig. 6. At these singular points the MFPT
jumps up and then down again, so that the solid line
together with the dots constitute the exact MFPT. Note
also that the dots correspond to the MFPT for a random
walk on a lattice with nonabsorbing lattice sites at posi-
tions 0,1,..., N and traps at —1 and N + 1 (cf. below).
For completeness we also give the expression for the
averaged MFPT (2.9) [cf. Egs. (3.11) and (3.13)]:

T(zo) = 3 [L—j—k+Aj+ Bk —£ (52 + k)], (3.17)
with the values of A and B given in (3.16).

FIG. 6. Mean first-passage time T (zo) in dimension-
less units as a function of zo when L is an integer. Here
L = N = 5. The middle curve together with the x’s are our
exact results; the circles are direct simulations (note that x’s
are circled). The x’s alone are also the MFPT’s for an ordi-
nary random walk as described in the text. The lower curve
is the MFPT for a diffusion process with diffusion coefficient
D = 0.5 and the upper curve is the aproximation given by
Eq. (4.29).
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A. Special cases

It is interesting and insightful to connect the general
results obtained above with familiar ones obtained by
other methods for special cases. These include the per-
sistent random walk on a lattice, an ordinary random
walk, and the continuous-time persistent random walk.

1. The persistent random walk on a lattice

Consider the case in which both L and z¢ are integers,
i.e., L= N and zo = m = 0,1,2,...,N. In this case
Eq. (3.17) reads

N
T(m) = 5(1 + &) + &m(N — m), (3.18)
which is precisely the MFPT for the persistent random

walk on a lattice (the word persistent being associated
with p # 1, that is, with £ # 1) [11].

2. The ordinary random walk

When p = ¢ =  one should recover from Eq. (3.18)

the well-known expression for the MFPT for the ordinary
random walk with traps at 0 and N [12]:

ToN (m) = m(N — m) (m=0,1,2,...,N). (3.19)
However, when we set p = ¢ = % in Eq. (3.18) we obtain
a different result:

T(m) =N +m(N —m) (m=0,1,2,---,N). (3.20)

The reason for this difference is the following. In the
derivation of Eq. (3.17) we have assumed that traps are
located at lim¢_,o(0 — €) and lim._,o(N + €) where € >
0, i.e., the traps are located immediately before 0 and

immediately after N. Under this assumption Eq. (3.20)
yields

T(0) #0 and T(N) # 0, (3.21)
while Eq. (3.19) necessarily implies that
T0)=T(N)=0. (3.22)

For the ordinary random walk, the assumption that the
traps are immediately before 0 and after N is equivalent
to the assumption that traps are located at —1 and N +1.
In this case TRW is given by the MFPT to reach these
traps minus the time expended in making one step to go
from 0 to —1 or from N to N + 1, that is,

T(m) =TE N1 (m) — 1. (3.23)
If we substitute Eq. (3.19) into the right-hand side of
Eq. (3.23) we obtain Eq. (3.20) and our model repro-
duces the ordinary-random-walk result. This is the result
shown by the dots in Fig. 6.

3. Continuous-time persistent random walk

The continuous-time persistent random walk was con-
sidered earlier by some of us [13]. It is equivalent to a
random process X (t) whose time evolution is governed
by the dynamical equation

where F'(t) is a Markovian dichotomous noise, i.e., a two-
state noise with an exponential switching distribution
[13-16]
P(t) = de M.
To establish the correspondence between the process
considered in this paper and the continuous-time persis-
tent random walk we take the continuum limit

(3.24)

N — oo, T — 0, Nar — L (finite). (3.25)
We also rescale the probabilities p and g as [17]
p=1-AT, q = AT, (3.26)

where A > 0 is fixed. As a consequence of this scaling we
observe that in the continuous limit (3.25), which we can
also write in the form

70, m— oo, with mr =1t (finite), (3.27)
the probability p™ = (1 — A7)™ that the noise keeps the
value a during m steps goes to the distribution function

of the Markovian dichotomous noise,
p™ — e, (3.28)

which is precisely the cumulative distribution function
associated with the switching distribution (3.24).

Substitution of (3.25) and (3.26) into (3.17) after re-
introducing dimensioned quantities [cf. Eq. (3.1)] leads
to the result

L A
T((Eo) = EEL_ + FwO(L — .’Bo), (3.29)

which agrees with previous results [15,16].

IV. DYNAMICS WITH ARBITRARY DRIFT
IN THE HIGH-FREQUENCY LIMIT

In this section we consider the system (1.1) with a
general drift f(z). Without further approximation the
analysis is necessarily numerical, and therefore we will
mainly deal with the problem in the “high-frequency”
(i-e., small-7) limit. First, however, we wish to stress
that in the presence of drift the system may again ex-
hibit interesting behavior (such as that found by Cohen
[9] and by Fraser and co-workers [4,5]), which shows up
in unexpected ways in the MFPT. Thus, consider the
case of a linear drift, f(z) = —0.5z. For the particu-
lar parameter values indicated in the figure caption, di-
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rect simulations lead to the data for the MFPT shown in
Fig. 7. A noteworthy result is that the MFPT exhibits
(in this case, two visible) sharp discontinuities, indicated
by the dotted lines in the figure. The value of these dis-
continuities is in agreement with the theoretical values
obtained from Egs. (2.14)-(2.16). Thus, for instance, let
us calculate the theoretical value of the discontinuity:
AT(z")= lim [T(z” +¢)—T(z™ —¢)].

€e— 04

(4.1)

From Eq. (2.14) we find that
. —_ —_ l . -_— + —_
EE)I& Tz~ 4+e) =7+ 2[61_11)151+T($ + AzT(z7) +€)
+T(21)], (4.2)
and from Eq. (2.15)

- - =7+ - +(z7) —
e}_l’I(I)l+T($ €) T+2€1_1’%1+T(a: + Az (z7) —¢€).

(4.3)
Hence

AT(z7) = 1 [T(z1) + AT(z™ + Azt (z7))], (4.4)
where AT (z~ + Az (z7)) is defined as in Eq. (4.1). The
value of the discontinuities calculated numerically from
Eq. (4.4) are in agreement with those from simulations.
We note also that the magnitude of the discontinuity de-
creases as T'(z1) decreases.

A second noteworthy feature in the figure is the pos-
sible evidence of oscillatory behavior. This oscillatory
behavior, as well as the discontinuities discussed above,
may be “remnants” of the behavior observed in the ab-
sence of a drift.

In order to carry out some analytic calculations, we
must resort to approximations, here specifically for the
small-7 limit. Our approach is based on expansions of

300 +

00,5000 ,0° O
oo°°°°o°°°°°° 00°°°60%,

T(xo)
—p

200 ©

100 .
-0.5 0.0

X0

FIG. 7. Mean first-passage time T'(zo) to 22 = —2; = 1 for
system (1.1) with linear drift [f(z) = —0.5z] as a function
of o with @ = 1, 7 = 0.1, and p = 0.5. The solid lines
show the discontinuities of T'(xo) at zo = £~ = —0.949 and
zo = —0.895. The value of the discontinuities is related to
the value of T'(z,) [cf. Eq. (4.4)].

the MFPT difference equations and boundary conditions
in powers of 7, a procedure that is problematic in view
of the discontinuities in the MFPT that we have just dis-
cussed. Such discontinuities would of course be entirely
missed by a small-7 expansion. Indeed, in the presence
of a drift, since the distance covered in a period 7 de-
pends on the position, the location of the discontinuities
in each realization of the process that begins at zo and
ends at one of the boundaries is different (this is not the
case in the driftless problem). On the other hand, the
relative magnitude of each discontinuity decreases and
the number of discontinuities increases as the frequency
771 increases. In calculating the MFPT as an average
of all these realizations it is not clear whether one ends
up with a curve that is everywhere discontinuous or one
that is smoothed out. We will see that the smoothing
will become more effective as the frequency increases,
so that the extreme smoothing implicit in the expansion
procedure hopefully yields a good approximation to the
actual MFPT curve. We will in any case check our ap-
proximate results against the exact ones found for the
driftless problem and also against numerical simulations.
The starting point of our approximation schemes is the
expansion of Eq. (2.7) in powers of 7:
Azt (z0) = 7[f(z0) L a][1 + 17f'(z0)] + O(7%). (4.5)
Before proceeding further we first note that the sub-
stitution of (4.5) into T* (zo + Az*(zo)) and subsequent
expansion in powers of 7 results in differential equations
with small coeflicients multiplying the highest derivative.
These equations are known to be singular, with ordinary
perturbation techniques yielding unsatisfactory results.
We have found only two special approximations that
avoid the singularity when 7 = 0. Omne such approxi-
mation consists in expanding 7% (zo + Az¥(z¢)) to first
order in T along with a specific scaling of the probabili-
ties p and q. We will see next that in the limit 7 — 0
this case reduces to that of dichotomous driving noise.
A second special approximation consists of expanding
T*(zo + Azt (o)) to second order in T but in order
to avoid singularities we also allow that a — oo in such a
way that the coefficient a®>1 multiplying the second deriva-
tive be finite. We will see that when 7 = 0 this case re-
duces to the diffusion process (i.e., Gaussian white driv-
ing noise).

A. Dichotomous driving noise

Using Eq. (4.5) to first order in 7 we find

+(zo
T (zo + Azt (o)) = T (z0) + T[f(m0) £ a]%x(—o—)

+0(7?),
(4.6)
T (zo + Awi(zo)) =T (zo) + 7[f(z0) £ a]%o—)

+0(7?%).
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Substituting this expansion into each of the terms in
Egs. (2.11) and (2.13) yields

T*(20) = 7+ pT* (o) + qT¥ (o)
+7£(@) % al - T (20) + 4T (20)]
+0(7?). (4.7)

With the rescaling (3.26) in (4.7) and upon taking the
limit 7 — 0, we obtain

dT* (o) f'mo) f(@o) ] dT*(20)
dzg f(zo) £a 2/\f2(xo) — az] dzo
- __.__fz(xi;\_ . (43)

One set of boundary conditions associated with Eq. (4.6)
immediately follows from Egs. (2.10) and (2.12), namely,

Tt (22) =T (z1) =0. (4.9)
The other set of boundary conditions associated with
Eq. (4.8) is easily derived from Egs. (2.11)-(2.13) and
Eq. (4.9). Thus, substituting Eq. (4.6) into Eq. (2.11)
and Eq. (2.13), using Eq. (4.9) and the scaling (3.26) we
finally obtain

dT* (z) 1

S S |
Cde (o, f(a) +a[)\T (21) = 1] (4.10)
and
T@)| L ey -
e z=z3 T f(z2) ~a[’\T (22) — 1. (4.11)

These results are exactly those found in our earlier work
by different methods [18].

B. Diffusionlike approximation

We next assume that 7 is small and the magnitude a
of the noise is large but now in such a way that a7 is
small while

D = la’r (4.12)

is finite. Thus, starting from Eq. (4.5) up to first order
in 7 we have

T+ (zo + AzE(z0)) = T (20 + at + 7f(20)) + O(7?),

T~ (zo + Az*(z0)) = T~ (zo * a7 + 7f(20)) + O(73),
(4.13)
that is

T+((L'0 + A:Bi(.?}())) = T+(.’l?0) + T[ (.’170) + ]
1 2 28*T ™ (x0)

+§a T dwg

dT (.’Eo)

+ O(Tz),
(4.14)

T~ (zo + Az*(z0)) = T~ (z0) + 7 [f(zo) + a) dT (xo)

2
a0l 0(72).

(4.15)

Observe that under the above assumptions the term

3a®r? = D1 (4.16)
is of first order in T. Substituting Eq. (4.15) into each of
the terms in Egs. (2.11) and (2.13) we obtain

T*(zo) = 7 + pT*(20) + ¢TF (o)
trlf(e) £ a]c—l%[pT*(wo) + T (z0)]

+D73iiz[PTi(wo) + 4T (z0)] + O(7?). (4.17)

Thus, in this special limit we have replaced the coupled
difference equations (2.11) and (2.13) by two coupled
second-order differential equations.

For the particular cases that we deal with subsequently
it turns out to be more convenient to work instead with
the initial-condition-averaged MFPT T(zq) defined in
Eq. (2.9) and the difference (which will not enter in our
subsequent specific cases)

T+ (z0)

- T_(wO).

S(a)()) = 2

(4.18)
From Eq. (4.7) we see that these quantities obey the fol-
lowing set of second-order coupled differential equations
(we only retain terms up to first order in 7):

D= 1= ) ) oy g) o
= —1+0(r), (4.19)
2qS(zo) — aTM =0+ O(7?). (4.20)
Zo
From Eq. (4.20) we see that
2
d5(@o) _ 1, 2T(zo) (4.21)
dzg 2q dz?
Substituting this equation into (4.19) we find
2
PpdT@) | ¢, )dT(I") ~1+0(r). (4.22)
q dzg o

This is precisely the form of the equation satisfied by the
corresponding mean-first-passage time when F'(t) in the
dynamical equation (1.1) is Gaussian white noise, but
here the diffusion coefficient has been “rescaled” to

D, = Pp= 2,
q

: (4.23)
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where the parameter £ = ¢/p was introduced in Sec. III

Our next step is to find the boundary conditions that
accompany Eq. (4.22). To this end we write Eq. (4.17)
for T (zo) at o = z1 but only retain terms of order ar
(recall that a7 is much greater than 7):

Tt (z1) = pT (21) + ¢T (z1)

+ar-% [pT* (z0) + 4T (20)]

- + O(7).

To=2z21

(4.24)

Now using Eq. (2.12) we see that T~ (2z1) = 0, T%(z1) =
2T (zo), and

dT~ (1110)

d:l)o

1 1
Sl s (4.25)

where we have taken into account that a > |f(xo)| for
all zg € [2z1,22]. Hence

To=21

T = —ar + O(1). 4.26

()= Zor T w0 (4.26)
Analogously we also find that
p _ dT(zo)

T = —=ar + O(7). 4.27

() = ~Far S| 40 (4.27)

We finally observe that when 7 = 0 we have
T(z2) =T(z1) =0, (4.28)

which are the boundary conditions for Gaussian white
driving noise. The problem here is thus not simply equiv-
alent to a rescaled version of the white-noise problem.

The solution of the system (4.22)—(4.27) is given in
Appendix C. For the special (but common) case of an odd
drift, f(—z) = — f(z) and with the critical boundaries at
2o = z and z; = —z the result simplifies to the rescaled
form of the white-noise problem,

xo 0
o= [ arerrn: [ ey,

s z

0
+ 1’; aT ev(_z)/D”/ dzeV@/Dr 4 o(r),

qUr —z
(4.29)
where V (z) is the potential defined by
Viz) = —/ dz' f(z'), (4.30)

and D, is given by Eq. (4.23).

In Figs. 8 and 9 we compare the results of direct sim-
ulations with the approximate form (4.29) for a linear
drift. The triangles in Fig. 8 correspond to the simu-
lation results with the parameters a = 1, 7 = 0.1, and
p = 0.5 (the discontinuities apparent in Fig. 7 are clearly
visible in the figure but have not been explicitly high-
lighted). Note that in this case D = a%7/2 = 0.05 is
not larger than at = 0.1 and therefore (4.29) is not ex-

48
300 | bl Sl 0 o,
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FIG. 8. Mean first-passage time T'(zo) to 22 = —2z1 = 1 for
system (1.1) with linear drift [f(z) = —0.5z] as a function
of xo. Two sets of parameters for the noise are used: (i)
a=1 71 =0.1, p = 05, and (ii) « = 3.16228, 7 = 0.01,
p = 0.5. In both cases D = 0.05. Direct simulation (triangles
for the first case and circles for the second one) as well as
approximation (4.29) (upper solid curve, first case; dashed
curve, second case) are plotted. The lower solid curve shows
the result when F(t) is Gaussian white noise.

pected to provide a good approximation. Indeed it does
not, as shown by the fact that the solid curve is quite
far from the triangles. The circles in the figure are the
results of simulations for the parameters a = 3.162 28,
7 = 0.01, and p = 0.5. Now D = 0.05 is somewhat
larger than ar = 0.0316228 (albeit not by much), and
(4.29) is expected to be a better approximation. It is,
as shown by the fact that the dashed line is closer to the
simulations. The figure also shows the mean first-passage
time for Gaussian white noise, which is the curve that the

25

-1.0 -0.5 0.0 0.5 1.0

X0

FIG. 9. Mean first-passage time T'(zo) to 22 = —21 = 1 for
a system (1.1) with linear drift [f(z) = —0.5z] as a function
of 2o with a =1, 7 = 0.1, p = 0.7. The rescaled diffusion co-
efficient is D, = 0.35/3. The circles are the simulation points
while the solid line is the approximation given by Eq. (4.29).
The dotted line has the same meaning as in Fig.7.
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approximation (4.29) approaches with decreasing 7 and
increasing a (again, in the figure D = 0.05), that is, the
diffusive MFPT

1 [ 0 :
T (o) = dz eV (®)/D- / da'e”V(E=)/Dr (4.31)

D, J.

When p # ¢ (Fig. 9) there is an increase or decrease of
the effective diffusion coefficient as given in Eq. (4.12).
Thus if p > q we have D, > D, while if p < q then D, <
D. The consequences of a change in the effective diffusion
coefficient are exponentially large in the MFPT, as can
be seen clearly by comparing the scales in Figs. 7 and 9.
The parameters in the two figures are the same except
for the value of p: the change of p from 0.5 (Fig. 7) to
0.7 (Fig. 9) implies that the diffusion coefficient increases
by a factor of %, as given by Eq. (4.23), while the MFPT
decreases by a factor greater than 10. The same effect is
observed for the discontinuities (which are therefore not
clearly visible in Fig. 9).

V. CONCLUSIONS

We have studied the MFPT problem for stochastic
systems driven by a coin-toss square-wave signal. The
MFPT for such systems presents the very remarkable
feature of being discontinuous and oscillatory. While a
nonsmooth behavior of the MFPT has been shown for
systems driven by shot noise with constant jumps [19,20],
an oscillatory behavior has not been reported in the lit-
erature (at least, to our knowledge) for any kind of driv-
ing noise. Both features, discontinuities and oscillations,
have been found for both free dynamics and dynamics in
the presence of an opposing drift (the latter case through
computer simulations). For linear driftless dynamics we
have been able to obtain exact analytical solutions which,
for certain values of the parameters, reduce to the more
familiar cases of the ordinary random walk, the persis-
tent random walk, and the continuous-time random walk.
This shows the rich structure and generality of the coin-
toss square-wave signal.

For dynamics in the presence of a drift (i.e., when there
is a potential) we have been able to obtain two analyt-
ical approximations valid for certain parameter values.
Thus, when the period 7 of the random driving signal is
small and the probability of persistence p is conveniently
rescaled, we arrive at the MFPT for systems driven by
Markovian dichotomous noise. On the other hand, when
7 is small but the magnitude a of the driving noise is large
in such a way that a®r is finite, we obtain another ap-
proximation to the problem that we have termed “diffu-
sionlike approximation” because in this case the equation
obtained for the MFPT is formally a diffusion equation,
though the boundary conditions are modified by the fact
that 7 is small but nonzero. Moreover when p = % and
7 = 0 we recover the ordinary diffusion case (i.e., the
case of systems driven by Gaussian white noise). In spite
of the fact that this is essentially a smoothing approx-
imation that does not take into account discontinuities
and oscillations, it gives fairly good results as shown by

simulations of the real system. We have also shown an
increase in the effective diffusion coefficient as the persis-
tence probability p increases.

We finally mention that these two asymptotic approx-
imations have a parallel in classical probability theory
[21] where, depending on parameter values, the binomial
distribution can be approximated by either the Poisson
distribution (which, in our case, would correspond to a
Markovian dichotomous noise) or the Gaussian distribu-
tion (which would correspond to the diffusion approxima-
tion). From this point of view, our asymptotic approxi-
mations can be considered as a proof of the central-limit
theorem applied to this problem that shows the so-called
invariance principle of this theorem, i.e., that the theo-
rem may hold under more and more general assumptions
which have not yet been fully explored [22].
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APPENDIX A: SOLUTION OF COUPLED
LINEAR DIFFERENCE EQUATION

To find the solution to the problem (3.8) with the
boundary conditions (3.3) and (3.9), we begin by defining
an operator S such that

S"T*(zo) =TT (z0 — m) (n=0,1,2,---). (A1)
Equation (3.8) can then be written as
2+ 2q
and its solution is
T*(2o) = C + 45 — 152, (A3)
p
where
Jj=[L — o] (A4)

is the integer part of L — zy and is thus the number
of points in the interval (zo, L] where the random walker
may change its velocity. Depending on the initial position
o, j can take on the integer values j = 0,1,2,..., N,
where IV is the integer part of L, N = [L]. In terms of j
we can define a “shifted initial position” Ty,

(A5)

To =0 + J,
and from the definition of the operator S we see that
Tt (zo) = SITH (o). (A6)

We also observe that the condition L — 1 < zg < L is
equivalent to setting j = 0. Therefore, in terms of Zy the
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boundary condition (3.3) can be expressed in the form

(G =0).

Substituting this condition into Eq. (A3) we find that
C = L — Ty, that is,

T+ (130) =L — Eo (A7)

T+(zo) = L — To + Aj — %jz (j=0,1,2,...,N).

(A8)
In order to apply the second boundary condition given by
Eq. (3.9) we must split the interval [0,1) into two subin-
tervals, [0, L — N] and (L — N,1). In the first subinterval
we have j = N, and the substitution of Eq. (A8) (with
j = N) into Eq. (3.9) yields the result

_ 1+ Ng q

2z —L— N N <%y < L).

A=ty Al | (N<m<L)
(A9)

In the second subinterval we have j = N — 1, and

Egs. (3.9) and (A8) yield

+ N
_Pr q+ q

A
P p+ Ng

[2Fo — L — (N —1)]

(L—-1<Zo < N). (A10)
It is not difficult to convince oneself that

T~(L — IEQ) = T+(:B0), (All)

so that one can easily find the expression for T~ from
the above expression for 7.

APPENDIX B: MEAN-FIRST-PASSAGE-TIME
DISCONTINUITIES

The discontinuities in the mean-first-passage times
noted in Sec. III can easily be evaluated explicitly. At
the points

zo; =L — 7, wg"jzel_i)%h:co,j—ke, ji=1...,N
(B1)

we find

T+($(_;j) - T+(m0,j)

£

=—W[N(1+€)+N(N—j)£

+(L - N) (1— 1—44—13\7%1)_5)]

(B2)
which is negative for all j, and
T~ (xg;) — T~ (20,;)
1+ N¢ 14+ (N +1)¢ ’

(B3)

which is also negative for all j. At the points

Tok =k, Ty = lirg o,k + €, k=1,...,N
, 50—

(B4)

we find

T (zox) — T+(a:g’k)

- w-w N S w-m),
1+ N¢ 1+ (N +1)¢

(B5)

which is positive for all k£, and

T~ (o) = T (g )

3

— W [N+ N - g

+(L - N) (1 - %EH
(B6)

which is also positive for all k.

APPENDIX C: SOLUTION OF DIFFUSIONLIKE
EQUATIONS WITH ARBITRARY DRIFT

The solution of Eq. (4.22) with (4.26) and (4.27) for
arbitrary f(z), z2, and 2; is

z2
T(z0) = A+ B / dz eV @)/
o

1 Z2 z2 B
Do / dz eV (®)/Dr / dz'e V(= )/D', (C1)
r Jxg 3

where

AZ (/ dz eV (@)/Ds /Z’ dz'e—V(@)/D.
i 21 T

P eV(m/Dr/ ”dm—V(m)/D,)’
q z

B =

(C2)

A= P aTt eV(z2)/D"B,
q

and
A= / " deeV@/De P o V()/De | P V(z)/De
o q q

(C3)
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